Development of Fused Silica Suspension Fibres for Advanced Gravitational Wave Detectors

TAUP Sendai 11th September 2007

Alastair Heptonstall Institute for Gravitational Research University of Glasgow

Monolithic suspensions for advanced detectors

- Development of monolithic suspensions is based on experience from the GEO600 suspensions
- This talk will cover aspects of production and testing of suspension elements suitable for Adv. LIGO and upgrades to Virgo
- The criteria that must be met by ribbon fibres for Adv. LIGO:
 - Strength (x3 safety margin)
 - Thermal noise performance
- To meet these criteria we require
 - Breaking stress > 2.4 GPa

Intrinsic loss $<3 \times 10^{-11}/t$, where t is the thickness of the ribbon

Improving fibre pulling technology

- Advanced LIGO suspensions require ±1.9% tolerance on fibre dimensions.
- This is a slight increase on the ±2.1% achieved in GEO600.
- Repeatability and tolerance in flame pulling machines is limited by gas regulation and slack in mechanical parts.
- A new machine was developed in Glasgow using a CO₂ laser and high precision drive systems
- Designed for both ribbon and cylindrical fibre production to be suitable for both LIGO and Virgo upgrades.
- The machine is also capable of welding fibres.

Pulling fibres using the CO₂ laser

Virgo laser pulling machine installation

Controlled shaping of the neck

Heptonstall, Barton, Cagnoli, Cumming, Faller, Hough, Jones, Martin, Rowan, Strain, Veggel, Zech

Mechanical loss in CO₂ laser pulled fibres

- Four Suprasil 300 fibres of diameter ~470μm were measured
- Initial analysis of losses shows a surface loss consistent with:

$$h\phi_{surface} = 4.7 \times 10^{-12} \,\mathrm{m}$$

From Penn et al we can calculate values:

for suprasil 2
$$h\phi_{surface} = 6.05 \times 10^{-12} \text{ m}$$

for suprasil 312 $h\phi_{surface} = 3.25 \times 10^{-12} \text{ m}$

 Suprasil 300 is not necessarily expected to be similar to 312 or 311 as it has a different manufacturing process and a lower OH content

Where does dissipation arise in our material?

- In order to reduce thermal noise we need to reduce dissipation.
- To do this we must first understand where it arises.
- Loss in fused silica is normally split into two categories
 - Bulk A very low level dissipation in the body of the material recently shown to be due to the residual effects of dissipation due to a two level system
 - Surface A much higher level of dissipation in the damaged surface layer
- The dominant loss mechanism depends on surface to volume ratio.
- This can now be controlled to a level acceptable for next generation detectors
- However a better understanding of the physics of these loss mechanisms is needed to reduce thermal noise for future detectors

Recent measurements at Glasgow (1)

- Loss measurements made on laser pulled fused silica fibres have shown a length dependence to dissipation
- This is consistent with a source of loss close to the top of the fibre
- This has been shown analytically and using finite element modelling
- Source of loss thought to be due to welding
- This is a previously unknown source of loss – highly relevant for development of detector suspensions

Recent measurements at Glasgow (2)

- Each weld gives different value for loss
- When viewed under a microscope possible loss mechanisms can be seen
- Fibre attached using thick neck shows lowest loss as less energy stored in weld

Heptonstall, Barton, Cagnoli, Cumming, Faller, Hough, Jones, Martin, Rowan, Strain, Veggel, Zech

Recent measurements at Glasgow (3)

- Analysis of dissipation in fibres has shown evidence of a frequency dependent bulk loss seen at a higher than expected level
- Approximately 10 times that seen in bulk samples
- At higher frequencies this contributes as much as 25% of loss

Heptonstall, Barton, Cagnoli, Cumming, Faller, Hough, Jones, Martin, Rowan, Strain, Veggel, Zech

Ribbon fibre development

Ribbon cross-sectional shape development

- First ribbon fibres pulled had a nonrectangular cross-section due to heat loss from edges.
- Laser was run at close to maximum power due to heat loss.
- Polished aluminium heat shield was developed to reflect heat back at edges.
- Further improvements to the symmetry of the fibre neck and cross section were achieved by using slides on either side to reduce the edge effects.
- Laser stabilisation has been significantly improved
 - Fast sensor
 - Wedged Brewster window for pick-off
- Profile of pull has been investigated to create good shapes for the neck regions

Profiling of ribbon dimensions

Strength and bounce frequency testing

Heptonstall, Barton, Cagnoli, Cumming, Faller, Hough, Jones, Martin, Rowan, Strain, Veggel, Zech

Welding technology

Bonding test mass ears at LASTI (1)

Bonding test mass ears at LASTI (2)

Conclusions

- Based on the experience of the flame pulling machines used for the GEO600 suspensions we have designed and built new fibre pulling machines using CO₂ lasers
- Laser pulled cylindrical fibres have a surface loss at a similar level to flame pulled fibres
- Data shows evidence of length dependent loss which appears to be related to the quality of weld
- There is strong evidence of frequency dependence in residual loss of fibres studied
- This appears to arise due to dissipation in the bulk of the fibre material but at a higher level of loss than is seen for larger 'bulk' samples
- Both the above effects need included in any model of suspension thermal noise in monolithic silica suspensions
- Further studies in progress
- The construction of the monolithic pendulum stage for LASTI has begun, with successful bonding of the ears to both the penultimate and test masses

